

HOW TO USE

The Monroe 324 Micro Scientist

Monroe, The Calculator Company

han . .

1999		All an an a	t et en	VI KALER HUTUNA	· · · ·
	d'a terra i	׳.	8. () 8	6 692 6	ÊX.
17	anan dara kan sere	1999 - A		2012/2014/03/03/03/03/04 	eta a de calendaria.
1 T 1 T 1				10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	
		3 <i>2</i>)	L., .)		
te de la composition de la composition En este composition de la composition de					
	Anna and Anna	· · · ·)			
		8			
		5			
148 148					
ENTRY		81 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(Chy (CH)		

ij

and a second second

INTRODUCTION

of an end of the second s

We'd like to extend our congratulations on your discriminating taste. In buying a Monroe Model 324 Micro Scientist, you have purchased the end result of 60-plus years of calculator experience. The Micro Scientist is designed to take the drudgery out of complicated mathematical calculations. It is much easier and faster to use than your slide rule and more accurate than the tables you've been using.

Although the Micro is simple to operate, it has many sophisticated features. This manual is written to help you get the most out of those features. Read it through and follow the examples with your Micro Scientist. Don't be afraid to experiment. Once you have studied the manual, keep it handy for quick reference.

The Micro Scientist is such a powerful tool that you'll soon wonder how you ever did without it. In a short time, it will be as indispensable as pencil and paper.

CONTENTS

KEYBOARD LAYOUTS
INTRODUCTION
HOW TO START
CORRECTING MISTAKES
ENTERING NUMBERS
ARITHMETIC
SPECIAL FUNCTIONS
13
200 FUNC
La. 190
/ Sain
17 3 South
TAN
0 = # #0
08C D.WS
₽₩S ₩C
20
601
· · · · · · · · · · · · · · · · · · ·
FUNCTION MIXING
DATA STORAGE REGISTERS
USING REGISTERS FOR ARITHMETIC 25
γ

1

...

DIRECT REGISTER ARITHMETIC 26
APPLICATIONS
SCRATCHPAD PROGRAMMING
MORE ABOUT PROGRAMMING 40
ACCURACY
ERROR CONDITIONS
BATTERIES AND RECHARGING 61
KEY INDEX
INDEX

vŤ

-

HOW TO START

Turn on the Micro Scientist with the on/off switch on the back. When you turn it on all the registers are cleared to zero and the decimal point is set to two places.

Press RESET and see

0.00

The Micro Scientist runs on rechargeable batteries or on house current if the AC adapter is used. When using batteries, the Micro Scientist's display begins flashing to warn you when the batteries are almost discharged. Batteries will recharge overnight with the AC adapter plugged in. See page 61 for more information on batteries and recharging.

The RUN/LOAD switch should be up (RUN) for normal keyboard operation. Set the GRAD/DEG switch to DEG unless you work with grads. When you're doing circular trigonometry, the Micro Scientist assumes either 360-degree circles or 400-grad circles depending on the setting of the switch.

ENTERING NUMBERS

CORRECTING MISTAKES ENTERING NUMBERS

CORRECTING MISTAKES

Whenever you find you've made a mistake in an operation, RESET clears the calculation so you can start it over. CLEAR merely clears the display so that you can correct an error in entering a number without losing the calculation you were doing.

Although it's usually not necessary, it's a good idea to press RESET before starting a calculation, just to be sure there are no leftovers inside.

If you see _____ in the display (it stands for ERROR), that means you've done something mathematically illegal or have produced a number outside the Scientist's range (its capacity is 10⁺⁹⁹ to 10⁺⁹⁹). Calculation is stopped. Press RESET or CLEAR to get going again.

A complete list of error conditions is shown on page 60.

ENTERING NUMBERS

You enter numbers simply by pressing each digit of the number that you want to enter. Here are some examples:

Enter This See This 5 .4 5 6 З. 12345678.00 7 B

Notice that the decimal point setting of two is maintained for up to eight digits of entry.

The display holds a maximum of 10 digits. The decimal point setting moves to protect your most significant digits. BLEAS

Enter This			See This
1 2 3	4 5	6	
7 8 9			(123456789 C
			12 3455 7693 ·
3			

You can enter a full 13 digits at any time. The Micro Scientist stores and uses 13 digits even though a maximum of 10 are displayed.

Enter This		See This
8 8	7	I 23456789D IZ

The last three digits are not displayed. The two digits at the far right indicate the power of ten for scientific notation.

Enter This

Э

See This

Entering more than 13 digits results in error. Press RESET or CLEAR . Two other important numeral entry keys are \cdot and $\frac{CHG}{SIGN}$. Use \cdot to enter the decimal portion of a number and sign to indicate a negative value or to change a negative value to a positive value. CHB may be used before, after or during numeral entry.

To enter - 326,1423 See This Enter This CHB 3 SIGN - 326 . 1423 З 2 A.

To enter a number in scientific notation, use EXP . CLEAR ENTRY To enter 6.025 X 10²³,

See This

5 2 Э EXP

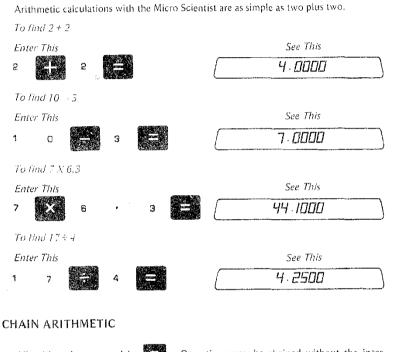
6.025 77

ENTERING NUMBERS

CLEAR To enter 662.52 X 10⁻³⁶, See This Enter This 6 5 CHG EXP 662 52 - 36 1 e

RULES FOR NUMERAL ENTRY

- · Enter numbers by pressing one digit at a time.
- Up to 13 digits can be entered, but only a maximum of ten can be displayed. Entering more than 13 digits gives <u>Example</u>.
- Use to enter the decimal point. Only one decimal point can be in the display.
- Use to make a positive number negative or a negative number positive.
- Use EXP to enter numbers in scientific notation.
 - Enter the mantissa
 - Press EXP
 - Enter the power of ten in scientific notation


allows you to set the decimal point to give up to nine decimal places in the fractional portion of a number. The decimal point setting only controls how answers are displayed, not how numbers are entered. Demonstrate this to yourself by entering different settings. CLEAR ENTRY

Enter This	See This
SET DP	0.000000
SET 4	0.000
Unless otherwise stated, the deci	mal point is set to four places for the examples in this

manual.

ARITHMETIC CHAIN ARITHMETIC

ARITHMETIC

Notice that whenever you press one of the arithmetic operators, the answer to the previous calculation is displayed. These keys act as intermediate keys.

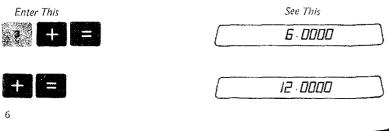
ARITHMETIC **RAISING NUMBERS TO POWERS** DOUBLING

is one of the most powerful keys on the Micro Scientist. It raises a number (a) to power(x). To use it, enter(a), press a^{*} , enter(x), then press

To find 4³

Enter This	See This	
4 0 * 4 E	<i>64.000</i> 0	
To find 4 ^{3.1}		
Enter This	See This	
▲ a [★]	73.5166	<u>]</u>

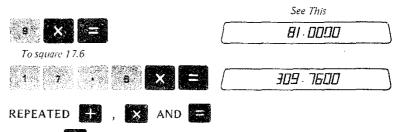
Rules for a^X


- a may be a number or a combination of operations
- x may be a number or a combination of operations
- a may be any positive quantity
- x may be any positive or negative quantity
- If a is negative, x may be negative or positive, but it must be an integer
- $a^{1} = a; a^{0} = 1; 1^{x} = 1; 0^{x} = 0; -a^{x} = error if x isn't an integer; 0^{x} = error$

DOUBLING

used in combination doubles the number in the display.

To double the number 3



SQUARING

EXE used in combination will square the number in the display.

To square 9

several times has the effect of cumulatively doubling the number in Pressing the display.

See This

Enter This

	3.0000	
\square	6.0000	
	12.0000	
	24.0000	

7

4-

X several times results in the cumulative multiplication of the number in the display, RESET



25.0000

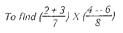
125 . 0000

625 . 0000

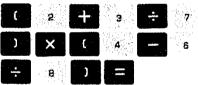
ARITHMETIC

÷ 11.0000 II 16.0000 21.0000 Ш results in cumulative Enter This several times after a calculation using . × :: = Pressing multiplication. RESET 2 5 with X Repeated 2 Э See This Enter This З 5.0000 8

The 5 is retained and multiplied by each new number in the display.

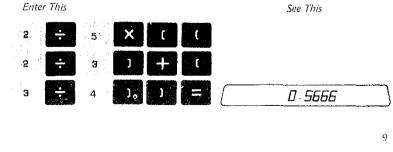

PARENTHESES

Enter This


=

Ш

allow you to perform more complicated arithmetic operations. Use them just as you do when writing out an equation.


See This

-0.1785

Parentheses may be nested two deep. This lets you solve equations like the following.

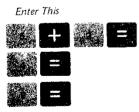
To find $\frac{2}{5}X/(2/3) + (3/4)/(3/4)$

· ARITHMETIC PARENTHESES CONSTANT ARITHMETIC

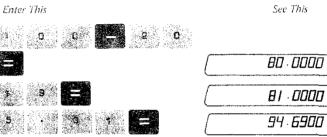
When using parentheses, keep these points in mind:

- For every open parenthesis, there must be a closed parenthesis. They are used in pairs.
- If you nest parentheses (use one pair of parentheses within another pair), make sure that for each left parenthesis there is a closing right parenthesis before you start another pair of nested parentheses.
- Closing parentheses act like **1999** for the arithmetic after the previous opening parentheses.

CONSTANT ARITHMETIC


Constant arithmetic lets you repeatedly use a constant and operator without having to reenter them for each new calculation. Here are the rules:

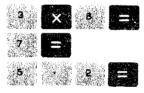
Enter the constant


- Enter the variable
- Press
- for each new calculation. Continue to enter new variables, and press

Constant addition using 5

See This	
7.0000	
9.0000	
8.0000	

Constant subtraction using 100

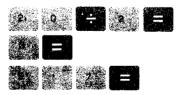


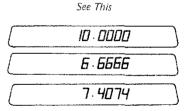
Constant multiplication using a multiplier of 3

Enter This

201

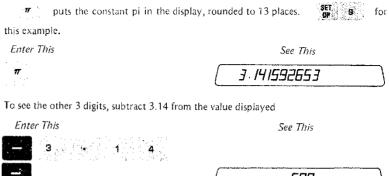
See This


18 . 0000 21.0000 *15 6000*


is saved as a constant

Similarly the number in the display prior to the last ÷ dividend,

Constant division using a dividend of 20



ARITHMETIC CONSTANT ARITHMETIC

 $\pi \frac{1}{2}$

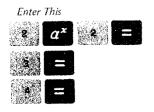
SPECIAL FUNCTIONS

590

3 digits not normally displayed

¥

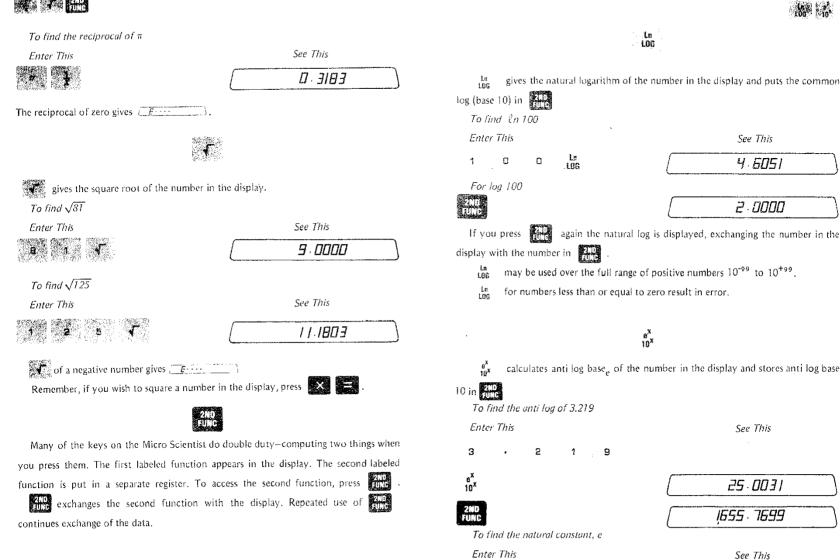
 $\frac{1}{x}$ gives the reciprocal of the number in the display.


To find the reciprocal of 3, $\frac{\text{SET}}{\text{DP}}$ 4 and

Enter This з 🛔

11

See This 0.3333


Raising the constant 2 to different powers

See This	
4.0000	
8.0000	
<i>16 . 0000</i>	

12

SPECIAL FUNCTIONS

CLEAR

oľ

в^х 10^х

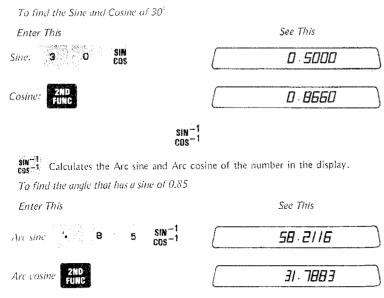
е^ 10^х

14

15

2.7182

SPECIAL FUNCTIONS


SPECIAL FUNCTIONS

to[#] SIN SIN⁻¹ 10[#] EOS COS⁻¹

Using with numbers outside the range -99 to +99 causes error since the antilog-base-10 exceeds the capacity of the Scientist. When this occurs, and if the number is between -225 and +229, the Micro Scientist puts the correct antilog-base-e into the second function register. Push to see it.

sin Cos

gives the sine and cosine of an angle in the display. The angle may be of any size, up to $|\theta| \le 9.0 \times 10^{14}$, and it can be positive or negative. It must be expressed in decimal degrees or grads depending on the position of the degree-grad switch.

 \sin^{-1} outside the range -1 to +1 results in \mathcal{E} SIN^{-1} ranges from -90 to +90 \cos^{-1} degrees or -100 +100 grads. COS ⁻¹ ranges from 0 to 180 degrees or 0 to 200 grads.

SPECIAL FUNCTIONS

TAN TAN-1

computes the tangent of the number in the display. The angle may be positive or negative and of any value except 90 degrees or 100 grads, or an odd multiple of 90 degrees or 100 grads. Tangents of these angles result in error.

TAN

To find the tangent of 38°

See This

TAN⁻¹ calculates Arc tangent of the number in the display.

TAN-1

To find the angle that has a tangent of 0,756

6

5

Enter This

• 7

See This

NOTE: The Arc tangent is limited to the range of -10^{49} to 10^{49} . The resulting angle is between -90 and +90 degrees (-100 to +100 grads). Arc tangents outside the range result in error.

SPECIAL FUNCTIONS

0-8

Twelve trigonometric functions are readily accessible from your Micro Scientist. The following table summarizes the key sequences for each of them:

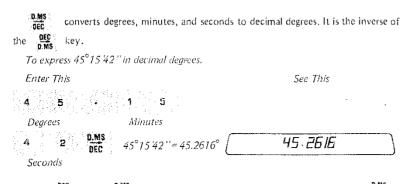
Function		Key Sequence
Sine	enter θ	sin Cos
Cos	enter θ	SIN 22.7 CGS 171 C
Tangent	enter θ	TAN
Cotangent	enter θ	TAN 1
Secant	enter θ	SIN 2ND 1 COS EDUC 2
Cosecant	enter $ heta$	SIN 1 COS 7
Arc sine	enter sin θ	sin ⁻¹ cos ⁻¹
Arc cosine	enter $\cos \theta$	sin ⁻¹ 2010 cos ⁻¹ conce
Arc tangent	enter tan $ heta$	TAN ⁻¹
Arc cotangent	enter $\cot \theta$	$\frac{1}{x}$ TAN ⁻¹
Arc secant	enter sec θ	$\frac{1}{x}$ $\frac{\sin^{-1}}{\cos^{-1}}$ $\frac{2710}{1012}$
Arc cosecant	enter csc θ	$\frac{1}{x}$ $\frac{\sin^{-1}}{\cos^{-1}}$

0→R R-→0

 $\frac{0}{R} - \frac{n}{Q}$ converts decimal degrees to radians or radians to decimal degrees. $\frac{0}{R} - \frac{n}{Q}$ assumes the number in the display to be in degrees. It converts the number to radians and puts radians in the display.

At the same time it assumes the number in the display to be in radians, it makes another conversion (from radians to degrees) and puts degrees in the the Grad-Degree switch is in the grad position radians to grads.

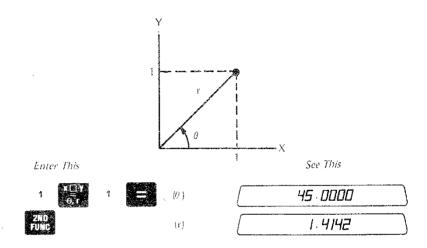
0-8 DEC 8-0 D.MS To convert 360 degrees to radians Enter This See This 0----R 8----Ω З 6 σ 6.2031 360° = 6,2831 radians To convert π radians to degrees Enter This See This 0-→R 8-→0 2010 111110 T 180 0000 π radians = 180° which is just what we learned in school. DEC D.MS converts any angle displayed in decimal degrees to the D.MS format. To convert 45.5 degrees to Degrees, Minutes, and Seconds. See This Enter This 45.3000 4 5 45.5° = 45° 30'00'' To convert 45.1234 to Degrees, Minutes, and Seconds. Enter This See This ۵ 5 1 2 DEC D.MS з 45.0724 4 45.1234° = 45°07'24''


Don't try to take the sine, cosine, or tangent of an angle that is displayed as D.MS. The Micro Scientist always reads it as decimal degrees, even though you may be thinking in degrees, minutes, and seconds.

 $\frac{\text{DEC}}{\text{D.MS}}$ has no effect with the degree grad switch in the

DEG

19


SPECIAL FUNCTIONS

The $\frac{bec}{b.Ms}$ and $\frac{b.Ms}{bec}$ keys are used together in many problems. Use the $\frac{b.Ms}{bec}$ key to convert for calculations. After all calculations are performed, convert back to the DMS format using the $\frac{bec}{b.Ms}$ key. Think of the DMS format only as an entry and display format to avoid any confusion.

If a point has the rectangular coordinate of x = 1 and y = 1, what are its polar coordinates?

SPECIAL FUNCTIONS

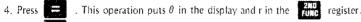
The point (x,y) = (1, 1) when expressed in polar coordinates is given by:

 $\theta = 45^{\circ}$

r = 1.4142

Note that the angle θ is measured counter-clockwise from the X axis for positive values of Y and clockwise from the X axis for negative values of Y. The following drawing clarifies this for you.

X and Y may be positive or negative, r is always positive and θ ranges from -180 to +180 degrees or -200 to +200 grads.


converts rectangular coordinates to polar coordinates.

To use it, follow this sequence:

- 1. "Display" the x coordinate
- 2. Press

S×∏ Y

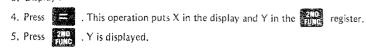
3. "Display" the y coordinate

5. Press 200 . The radius r is displayed.

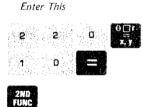
FUNCTION MIXING

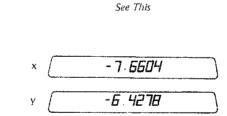
SPECIAL FUNCTIONS

⊖⊡r x,y



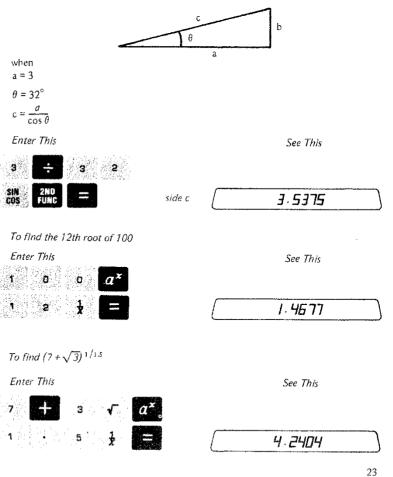
converts polar coordinates to rectangular coordinates. To use it, follow this


sequence:



-3. Display r

If a point has polar coordinates of $\theta = 220^{\circ}$ and r = 10, find its rectangular coordinates.



When using this key, angles may have any positive or negative value. The above example gives the same results with $\theta = -140^\circ$. Try it!

FUNCTION MIXING

You can begin to appreciate the power of the Micro Scientist when you need to make calculations involving several functions.

To find the length of side c of a triangle with side a, and the angle θ known

DATA STORAGE REGISTERS

DATA STORAGE REGISTERS

DATA STORAGE REGISTERS

The Micro Scientist has 10 storage registers. Each storage register has a capacity of 13 digits plus exponent. If and it when used with the numeral keys let you STORE numbers and RECALL numbers. To store a number that's in the display, press

and one of the 10 numerical keys 0 through 9.

2

3

To store	1.1	234	in	register	0
----------	-----	-----	----	----------	---

.1

Enter This

Π

J.	1234

See This

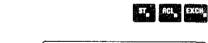
2

See This

1.4142

CLEAR). After a number is stored, you may do any operation that you wish, (e.g. Later when you need the number again, recall it.

Enter This	See This
RCL	1.1234


When a number is stored, it replaces whatever number is in that register. When you recall a register, the number in the register isn't changed. It's copied into the display and also kept in the register. You can demonstrate this for yourself by doing a **CLEAR** and another RCL 0

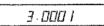
exchanges the number in the display with the number in any of the 10 storage EXCH registers. This is useful if you have filled all 10 registers and want to use a stored number without losing the number in the display. It can also be useful as a step saver in many situations.

ate	EXCH	, enter	and	store	the	number	2	into	the	register	- 0 (
and	do the	followin	ng ste	eps.								

Remember, that if you turn your Micro off, all registers are cleared to zero.

USING REGISTERS DURING ARITHMETIC

When doing calculations, you can add, subtract, multiply, divide, a^{X} , and compute other functions using registers as you would numbers.


Starting with a simple number, we'll show a series of operations that demonstrate how the registers can be used in making calculations.

Enter This See This 1.0001 3.0001 (Same as 2 + 1.0001) 3.000T n I 2.0000 (Same as 3.0001 - 1.0001) ST_n ۵ 2.0000 6.0002 (Same as 3.0001 X 2.0000)

DIRECT REGISTER ARITHMETIC

DATA STORAGE REGISTERS DIRECT REGISTER ARITHMETIC

(Same as 6.000 2 ÷ 2.0000)

This example shows operations that are strictly algebraic. There is another way to use the registers in your calculations that isn't conventional but is shorter and faster. We call it direct register arithmetic.

DIRECT REGISTER ARITHMETIC

ARITHMETIC INTO REGISTERS

Rules for Arithmetic into Registers

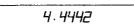
- n adds the display to register n
- n subtracts the display from register n
- n multiplies the display into register n
- n divides the display into register n

We'll demonstrate this faster technique by storing our starting number in register 0.

Enter This

ST_n

st_n

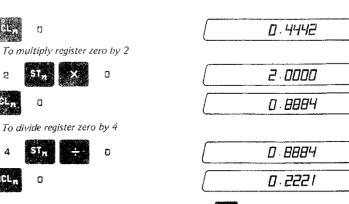

ST

51,

(

See This

To add 2 to register zero


2	st _n	+	0
RCL,	0		

To subtract 6 from register zero

 2.0000	
 6.4442	

The procedure is easy if you remember to press $5T_n$

first, the arithmetic operation

next, and the register number last.

For all the store-arithmetic operations, the display is not changed and the register contains the result of the arithmetic.

ARITHMETIC OUT OF REGISTERS

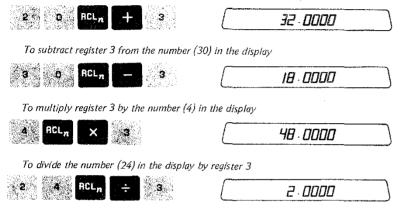
Rules for Arithmetic out of Registers

- n
 adds register n to the display

 n
 subtracts register n from the display

 n
 multiplies register n into the display
 - n divides register n into the display

For all the recall-arithmetic operations, the register is not changed and the display shows the result of the arithmetic.


To demonstrate arithmetic out of registers we'll start by storing the number 12 in register 3.

See This

DIRECT REGISTER ARITHMETIC APPLICATIONS PHYSICS

To add the contents of register 3 to the number (20) in the display

Direct register arithmetic is a powerful shortcut. It saves time and steps and is well worth mastering.

APPLICATIONS

Now that we have studied all the keyboard functions, let's put our knowledge to work in solving some typical problems.

PHYSICS

A prediction of the special theory of relativity is that the mass of a moving body is greater than its mass when at rest. The equation that describes this is given by:

$$M = \frac{M_0}{\sqrt{1 - v^2/c^2}}$$

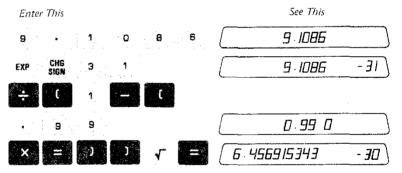
where

M = the mass of the moving body

 $M_0 =$ the rest mass of the body

- V = the speed of the body relative to an observer
- C = the speed of light (2.9979 X 10^8 meters/second)

Using the Micro Scientist, find the mass of an electron traveling at 99% of the speed of light. The rest mass of an electron is 9.1086×10^{-31} kg.

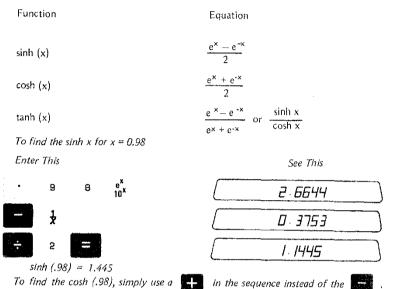

If v = 0.99C, then the equation becomes:

$$M = \frac{M_0}{\sqrt{1 - \frac{(0.99C)^2}{C^2}}} = \frac{M_0}{\sqrt{1 - (0.99)^2}}$$

Substituting numerical values:

$$M = \frac{9.1086 \times 10^{-31} \text{ kg}}{\sqrt{1 \cdot (0.99)^2}}$$

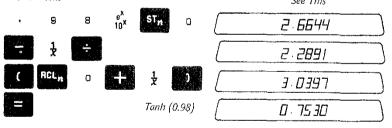
Using the keyboard, the solution works like this:



The mass of an electron traveling at 99% of the velocity of light is 6.4569×10^{-30} kg. Although the example was quite simple, it demonstrates some basic keyboard techniques. Let's try something else.

HYPERBOLIC FUNCTIONS

Suppose that you are working with the hyperbolic function: $\sinh x$, $\cosh x$, and $\tanh x$. With the Micro Scientist, evaluating these functions is easy.


APPLICATIONS HYPERBOLIC FUNCTIONS

Try it!

If you get 1.5198, you can throw away your slide rule and tables.

To find the tanh (.98), you can calculate it directly from the equation like this: Enter This See This

Or you can use the registers to store your calculations for $\sinh(x)$ and $\cosh(x)$ and then calculate $\tanh(x)$ from the ratio:

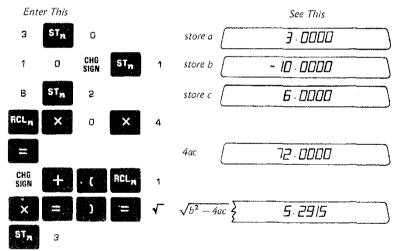
 $\frac{\sinh(x)}{\cosh(x)}$

QUADRATIC EQUATIONS

Finding the real roots of a quadratic equation is often useful.* Using the general formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Let's find the roots of the equation:

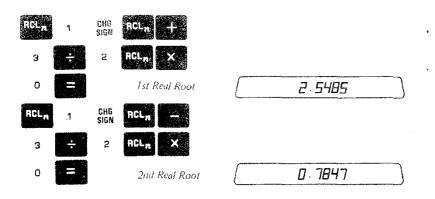

$$3x^2 \cdot 10x + 6 = 0$$

a = 3

b = -10

c = 6

To save time and possible confusion, analyze the problem so that it can be solved by a logical sequence of steps. Here's one way to do it.


*A method for finding both the real and complex roots for quadratic equations is described in the section on programming (see page 53).

APPLICATIONS

QUADRATIC EQUATIONS

APPLICATIONS QUADRATIC EQUATIONS

1.1

For the equation:

$$3x^2 - 10x + 6 = 0$$

The real roots are:

x = 2.5485 and

x = 0.7847

This same sequence of steps will work for any quadratic equation with real roots, simply by changing the coefficients a, b, and c that are stored in the first few steps. This principle of using the same sequence of steps to solve a general problem leads us quite naturally into scratch pad programming which will be discussed in the next sections.

PROGRAMMING

SCRATCHPAD PROGRAMMING

The added capability of scratchpad programming opens a whole new dimension of computation. Programming is most useful if you need to make the same general calculation many times with a lot of different data. Scratchpad programming is essentially automatic key pressing. Once you have found an efficient sequence of steps that solves a particular problem, you can program those steps to work for a generalized problem with a full range of variables.

The 324 has two separate 80-step memories. This means that you can store up to 80 (or 2 x 80) keyboard operations at one time and they work automatically for as long as you want.

Here are a few basic rules to keep in mind when using the programming feature of the Micro Scientist.

- There are 80 program steps. If you go past 80 steps, you will end up back at step 01 and your original program will be erased by the new steps.
- Programming is essentially working a particular calculation sequence when the machine is in _____. Once loaded, the Micro Scientist automatically performs the IGAD sequence any time you need it.

- · If you make a mistake while loading a program, switch from LOAD to RUN and back to LOAD. Start over,
- Use START/STOP at the points in your program where you want to enter variables or data and at the points where you want answers to be held in the display.
- If you have room in your program, use identification numbers to indicate variable entry points and to help keep track of where you are in the program.
- Once the program is loaded, switch to
 for execution.
- In general, press start the program and get to the point where you enter the first variable.

PROGRAMMING VOLUME OF SPHERE

- Program 1 and 2 are independent. The program switch program step. You can only switch from one memory to the other when sun RUN/LOAD is up .
- If (_________) displays during loading, ..., switch to RUN and then switch back to LOAD. Start loading the program again.
- During the running of a program, you should be able to do independent calculations when the program is at a stop. This means that you should not leave any algebra hanging in the program at the stop. (e.g., 2) **Figure Struct**).
- If you use or while a program is running, the program stops and the display is cleared.
- Digit entry keys, , exp. and CHB cannot be used as program steps immediately after STOP.

With these rules in mind, let's write a simple program. The volume of a sphere is given

uation,
$$V = \frac{4}{3}\pi r^3$$

by the eq

With scratchpad programming, calculating the volume once automates finding the

volume of a sphere of any radius. At the top of the keyboard is the $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ button and the $\begin{bmatrix} 1 \\ L0AD \end{bmatrix}$ switch. There is also a program selector switch $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}_{0}^{P}$. This switch is discussed in the next section. For now just leave it in the "1" position, $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}_{0}^{P}$, and forget about it. Put the RUN/LOAD switch in the load position. Press RESET and $\begin{bmatrix} RUN \\ 2 \\ 0 \end{bmatrix}$. The display breaks into three sections and looks like this: At the far right of the display is a two digit number that tells the step number to be loaded *next*. At the left is the displayed-with-seven-digits mantissa followed by the two digit exponent for scientific notation.

PROGRAMMING

VOLUME OF SPHERE

See This

02

ШЭ

ŪЧ

05

ПG

7۵

08

09

Ш

11

12

ΙJ

00

0.00000 00

1.000000 00

3.000000 00

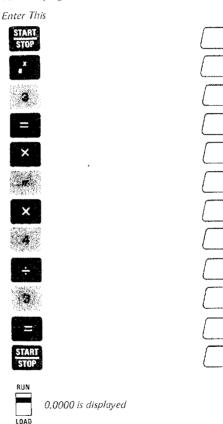
0 00000 00

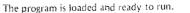
0.00000 00

0.000000.00

4.00000 00

0.000000.00


3.00000 00


0.00000 00

0.000000.00

3.141592

To load a program that will solve our example problem, follow this procedure:

35

6

9

10

11

PROGRAMMING VOLUME OF SPHERE

RUNNING THE PROGRAM

PROGRAMMING HYPERBOLIC FUNCTIONS

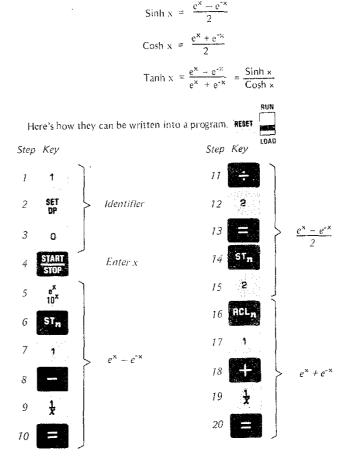
These same techniques are applicable to our previous problem of calculating the hyperbolic functions. Recalling the equations:

Programs run in different ways depending on how they are written. To run this program follow these steps.*

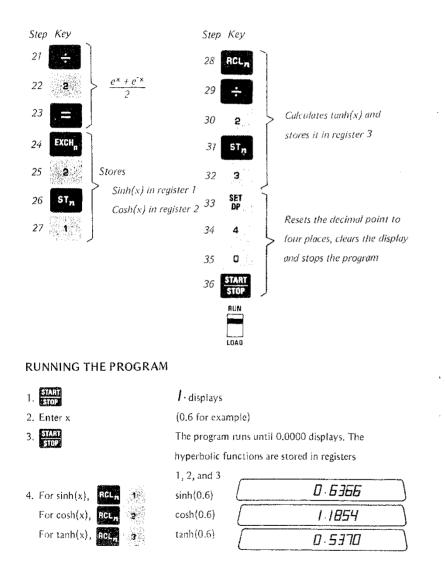
2. Enter a value for the radius (r). 2 for example.

3. STOP The calculation for V displays

33 5103


4. For a new calculation of V return to step 1.

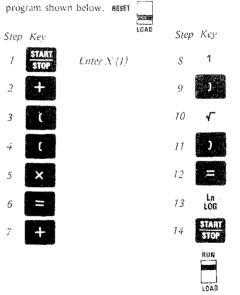
Here is a table showing the volume of a sphere as a function of the radius. The table


was made by running the program several times with different radii.

Radius	Volume
1	4.1887
2	33.5103
3	113.0973
4	268,0825
4,125	294.0088

*If you make a mistake and want to get back to the beginning of the program, simply put the run/load switch in LOAD and then back to RUN. Start running the program again from step 1.

PROGRAMMING HYPERBOLIC FUNCTIONS


PROGRAMMING HYPERBOLIC FUNCTIONS

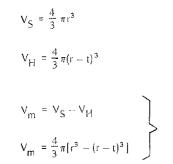
5. For another calculation return to step 1.

With a little thought and planning a similar program could be written for the calculation of the inverse hyperbolic functions. As an exercise, write a program for the inverse hyperbolic sine using this equation.

$$\sinh^{-1} x = 2n(x + \sqrt{x^2 + 1})$$
 $-\infty < x < \infty$

If you get sinh $^{-1}$ (1) = 0.8813 when you run your program, you're on your way to being an expert Micro programmer. If you didn't get the correct answer, try using the $\frac{300}{300}$

MORE ABOUT PROGRAMMING

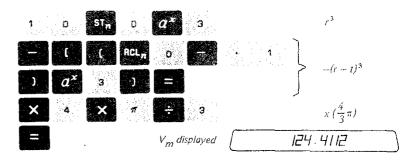

MORE ABOUT PROGRAMMING

As you become more familiar with your Micro Scientist, you can begin to realize its full potential. We have already shown the basics needed to start writing programs using one 80 step memory. In this section we show some more programming concepts and introduce two memory scratch pad programming. This section will help you get the most out of your machine because we have included some useful tricks and techniques.

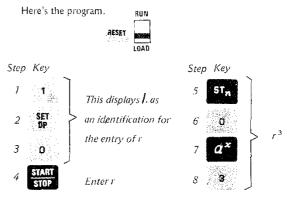
As a kind of quick review, let's take our very simple program for finding the volume of a sphere and make it a little more complex. Suppose that you are doing some rough calculations in designing a spherical pressure vessel. You wish to find the actual volume of material used in making vessels of various diameters and thicknesses. We already know that the volume of a sphere is given by:

$$V = \frac{4}{3}\pi r^3$$

To find the material volume of a hollow sphere of thickness t, all that is needed is to calculate the volume of the non hollow sphere of radius r and subtract the volume of a sphere of radius (r - t). The equations look like this:


Volume of the solid sphere

Volume of the hollow space in the pressure vessel


Material volume of a hollow sphere

then we can find V_m using the following sequence of steps.

To generalize the calculation to work for any r and any t, load the sequence as a program, replacing the steps where we entered 10 for r and 0.1 for t with steps . We should also put a state at the end to hold the calculation for V_m in the display. To keep track of where we are, we will display f. at the point where r is to be entered and 2. at the point were t is to be entered.

(1)

MORE ABOUT PROGRAMMING HOLLOW SPHERE

Identifier 2

to enter t

Enter t

4

Step Key

9

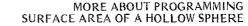
10

11

12 0

13

15


17

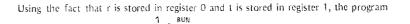
18

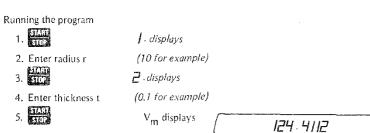
19 3

14 2

16 5

You can see that scratchpad programming adds a whole new dimension to the Micro Scientist's capacilities. It frees your mind from the tedium of pencil and paper doodling and lets you experiment. Equations become ideas rather than complicated manipulations. The machine itself becomes a scratchpad and a real world extension of your mathematical thinking.


With the hollow sphere program loaded into program memory 1, suppose now that there is a need to make a *separate* calculation for the inside and outside surface areas of the hollow sphere. With the two program capacities of the 324 Micro Scientist, we can easily load the new program into Memory 2.


The surface area equations are:

 $S_{O} = 4\pi r^{2}$ $S_{I} = 4\pi (r-t)^{2}$

sequence is the following: RESET

Surface area outside Surface area inside

Step Key

20

21

22

23

24

25

26

27

28

30

 $r^{3} = (r - t)^{3}$

4

Х

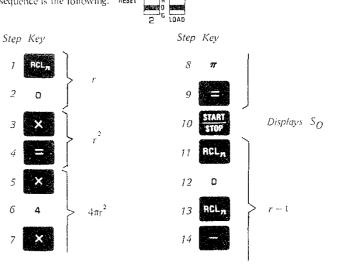
77

Э

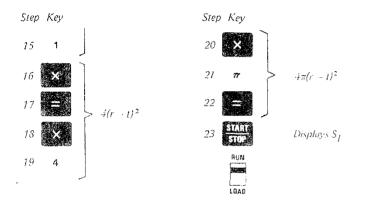
¢

SET DP

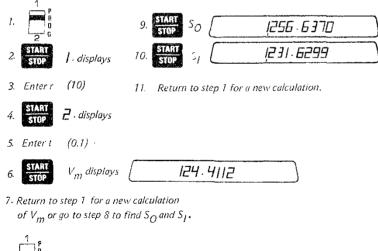
29 4


START STUP $\frac{4}{3}\pi/r^3 - (r-t)^3/$

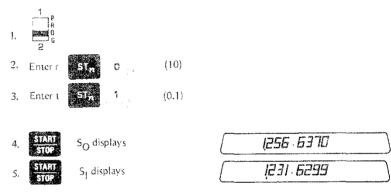
Change decimal point for answer


Display V_m

 V_m


6. To run the program again (using any r and any t) return to step 1,

MORE ABOUT PROGRAMMING SURFACE AREA OF A HOLLOW SPHERE


What we have now is two programs that can be used either together or separately. If used together they run like this:

1 R 2 2

MORE ABOUT PROGRAMMING SURFACE AREA OF A HOLLOW SPHERE STATISTICS

Used separately, program 1 would operate as previously shown. Using program 2 as a separate program requires that r be prestored in register 0 and t be prestored in register 1. Program 2 would then operate like this:

6. Return to step 2 for a new problem.

Both of these programs can be considered to be independent. The fact that they share registers 0 and 1 keeps them from being completely independent, but in principal either of the programs can be changed without affecting the other. One important caution. RUN <u> SHIN</u> 55.CA . The program Switch the program selector BEFORE you switch from to RUN LOAD selector has no effect in the position. LOAD 50.00 LOAD

These programs are simple examples of two related problems which must be solved from time to time. Now let's look at another situation where two separate memories are a big help. Suppose your work requires you to compute the mean, standard deviation, and upper and lower 95% confidence limits of a group of things, like sampling the weights of small parts from a casting machine.

The formulas are not complex, but they aren't much fun when you do them by hand.

MORE ABOUT PROGRAMMING STATISTICS

MORE ABOUT PROGRAMMING STATISTICS

Here they are:

Mean = $\overline{X} = \frac{\Sigma X_i}{n}$ Standard Deviation = S.D. = $\sqrt{\frac{\Sigma X^2 - n\overline{X}^2}{n}}$

Upper 95% Limit = X + 2(S.D.)

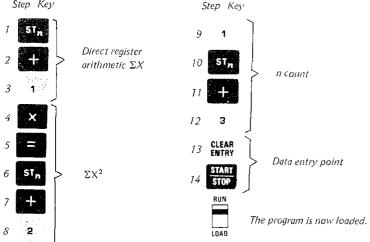
Lower 95% Limit = X - 2(S,D)

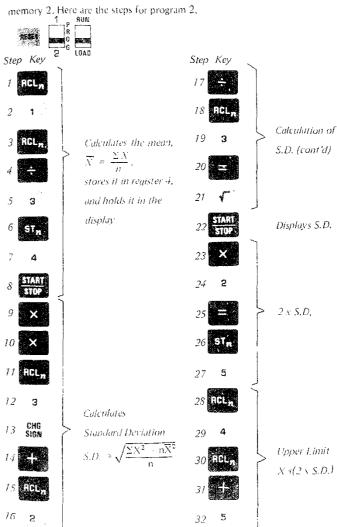
n is the number of entries

 ΣX is the sum of all the entries

 ΣX^2 is the sum of the squares of all the entries

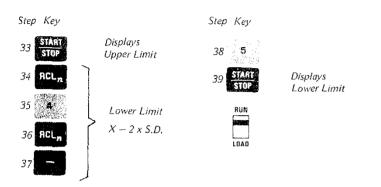
The idea is to enter each weight measurement once, sum it, square it, sum the squares and count the entries. When all the weights are entered, the other calculations can be done. So, we can use two programs-one for data entry and one for the desired results. Data entry will be program 1.


n count


Data entry point

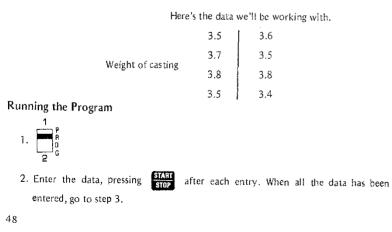
Step Key

With the data entry program in memory 1 we can now load the cleanup program into

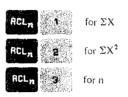

Ľ,

5

6


16

MORE ABOUT PROGRAMMING STATISTICS

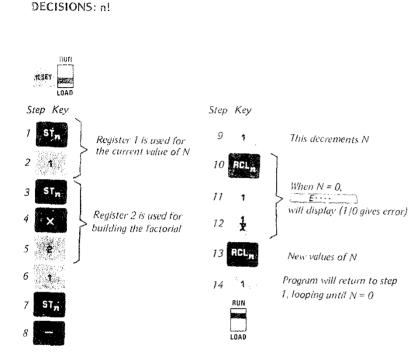

Now that both programs are loaded, we are ready to use them with real data. Since we will be using registers 1, 2, and 3 as summation accumulators, it's important that we clear them before starting.

MORE ABOUT PROGRAMMING STATISTICS DECISION MAKING

If you want the summations at any time:

For the above data:

1


3.	START STOP	x displays
	2 START STOP	SD displays
	STARY STOP	Upper Limit
	START STOP	Lower Limit

3.6000	
0.1414	
3 · 8828	
1. <u>1</u> . 17. 1	

4. You can switch to program 1 and return to step 1 to *add* more data *or* you can switch to program 1, clear registers 1, 2, and 3 and return to step 1 to start a new problem with all new data.

DECISION MAKING

The 324 can make decisions. There are two types of "decisions" which can be made. One is a sort of counting decision; the other a quantitative decision. Let's take the counting type first. Suppose you want to be able to take factorials. You know that n Factorial = $n! = n(n - 1) (n - 2) \dots (2)(1)$. So obviously, you want to enter a number n and let the 324 do the work. It can. Here's the program:

MORE ABOUT PROGRAMMING

SUBROUTINES

MORE ABOUT PROGRAMMING DECISIONS: n! MAXIMUM VALUE OF A FUNCTION

2.586232415

59

Here's how to run the program:

Running the Program

 s 2 Prestore the decrementing value.
 Enter N (e.g., N = 5) Program runs until (e.g., N = 5) displays.
 geser (19) 2 displays N! (5! = 120)
 Try it again with another number, 47 for example. This will take longer, but finally

E-----displays.

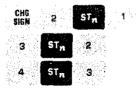
RESET ALL 2 gives 47!

You can see that 1/x is an effective means of providing loop control when decrementing to zero. Dividing by a register which contains zero might also be used.

Many of the mathematical processes we use don't ever give zero results, and thus the divide by zero technique is not applicable. Let's look at another method. Suppose, for example, we want to find a maximum value of a function:

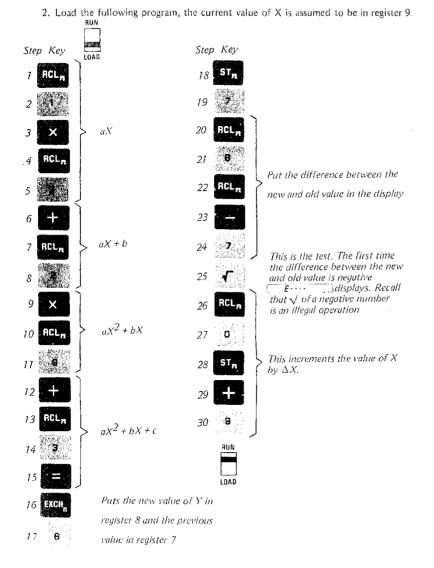
$$Y = aX^2 + bX + c$$

where


a = -2

b = 3

c = 4


The easiest way is to evaluate the equation at various points and compare subsequent results. As soon as a result becomes less than the previous one, the maximum value has been reached. Let's try it.

1. Store the values of a, b, and c in registers 1, 2, and 3.

.....

MORE ABOUT PROGRAMMING DECISIONS: MAXIMUM VALUE OF A FUNCTION

MORE ABOUT PROGRAMMING DECISIONS: MAXIMUM VALUE OF A FUNCTION ROOTS OF QUADRATIC EQUATIONS

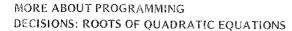
Running the Program

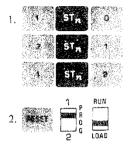
10000000000

- 1. Verify that a, b, and c are correctly stored in registers 1, 2, and 3.
- 2. Store a starting value for X in register 9. Let's start with $X_0 = -5$.
- 3. Store the increment to X in register 0. Use 0.25 for this increment.
- 4. STAR The program loops until $\overline{\xi_{11}} \in \overline{\xi_{12}}$ is displayed.
- 5. RESET RIPLES
- 6. If your starting value for X is displayed, press start. . if not, go to step 8.
- 7. The program loops again until Error is displayed.
- 8. RESET READ 7 The computed maximum value for Y is displayed. (5.1250).
- 9. RCt, 9 RCt, 0 Displays the X value (0.7500) that corresponds to the computed Y_{max} . Of course, what you have is the nearest value to Y_{max} allowed by the 0.25 increment. In this example X = 0.75.
- For a new program store new values for a, b, and c in registers 1, 2, and 3. Return to step 1.

ROOTS OF QUADRATIC EQUATIONS

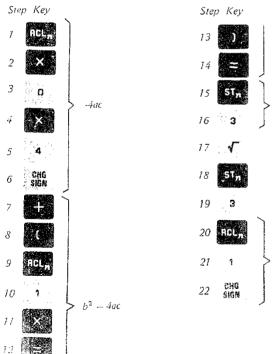
Here's an example that combines the decision techniques with the two memory

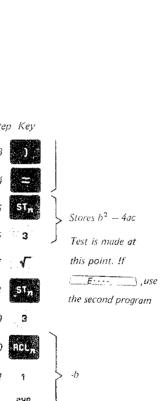

capability. We wish to find the roots of the quadratic equation:


 $ax^2 + bx + c = 0$

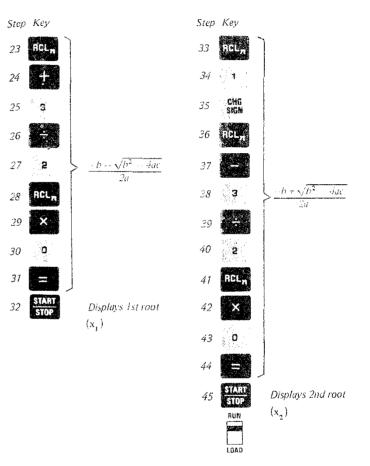
We know from elementary algebra that a solution is given by:

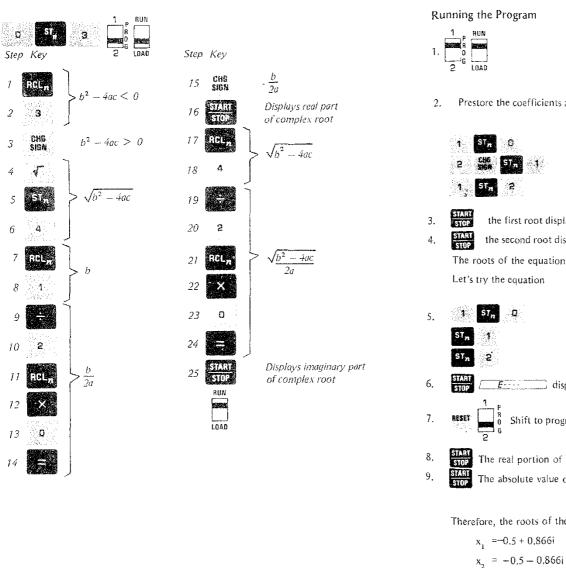
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$


The roots are real if the term $b^2 - 4ac \ge 0$ and they are complex if $b^2 - 4ac < 0$. With two memories we can solve for both the real and complex roots. Here's how it's done. To make sure that the program loads correctly prestore these values:



10 S

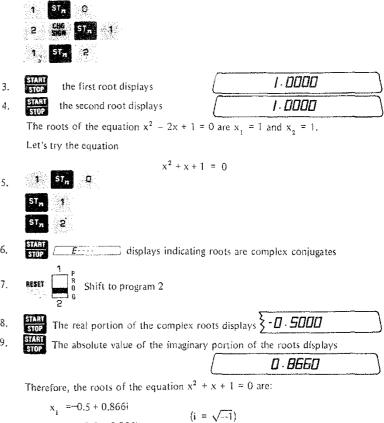

3. Load the following program steps:



. . . 1.30.20.20.20.

MORE ABOUT PROGRAMMING DECISIONS: ROOTS OF QUADRATIC EQUATIONS

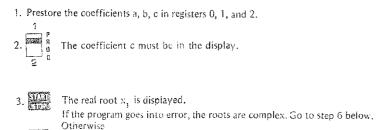
The first program solves for real roots but goes into error if the roots are complex. The second program is then run to find the complex roots. Here's how to work the second program.



MORE ABOUT PROGRAMMING DECISIONS: ROOTS OF QUADRATIC EQUATIONS

MORE ABOUT PROGRAMMING DECISIONS: ROOTS OF QUADRATIC EQUATIONS

Prestore the coefficients a, b, and c in registers 0, 1, and 2. For the equation


 $x^2 - 2x + 1 = 0$

MORE ABOUT PROGRAMMING DECISIONS: ROOTS OF QUADRATIC EQUATIONS

In case you found that all confusing, here is a generalized procedure for running the programs:

1.73838231 (

4. The real root x_2 is displayed.

5. Return to step 1 for a new problem.

6. $\frac{1}{2}$ **RESET** to find the complex roots.

- 7. The real portion (R) of the complex root is displayed.
- 8. The absolute value of the imaginary portion | C | of the complex root is displayed (i.e., the coefficient of i).

9. Combine the real and imaginary portions to get the complex conjugate pair.

 $\begin{array}{rcl} x_1 &=& R + C \\ \vdots \\ x_2 &=& R - C \end{array}$

10. Return to step 1 for a new problem.

ACCURACY AND NUMBER SIZES

All numbers in the Scientist have 13 significant digits. Angles are carried internally as decimal degrees or grads to the same significance. A two-digit exponent with each number gives the magnitude. This allows the range to go from 10^{-99} to 10^{99} . Significance is not lost when numbers are displayed to any number of decimal places, since the number retained internally is not modified.

Add, subtract, multiply and divide are accurate to the full 13 digits. Divide is actually rounded in the 13th digit, to gain a bit more accuracy.

Let $\int_{100}^{10} dx^2$, $\int_{100}^{310} dx^2$, $\int_{100}^{310} dx^{-1}$, $\int_{100}^{310} dx^{-1}$, $\int_{100}^{310} dx^{-1}$, and $\int_{100}^{3-4} dx^{-1}$ are almost always accurate to 1 part in the 12th digit and are never worse than 1 part in the 11th digit. Since the **and Figure** and **Figure** conversions use the trig functions, they have similar accuracy.

 $\sqrt[4]{}$ is good to three parts in the 13th digit. $\frac{1}{2}$ is a divide so it has the same accuracy as divide.

That's a lot of accuracy-more than you will need in most cases. But when you do need it, it is there.

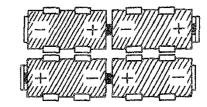
ERROR ---

E

ERROR CONDITIONS

The following causes _____

- Dividing by zero
- 1/x of zero
- \sqrt{o} f a negative number
- Log of zero or negative number
- Arc sine of a number greater than 1 or less than -1
- Entry of more than 13 digits (or a decimal point followed by more than 12 digits)
- Taking the tangent of 90° or 100 grads or any odd multiple of these angles
- Calculating 0^{-×} with the a[×] key
- Calculating a^{-x} with negative a and noninterger x
- Calculations that produce numbers beyond 10⁺⁹⁹ to 10⁻⁹⁹
- · Pressing two or more keys simultaneously
- Pressing more than two keys in succession while the machine is busy calculating (it can remember two keystrokes)


BATTERIES AND RECHARGING

BATTERIES AND RECHARGING

The Micro Scientist operates on batteries when not connected to an AC power source. You can connect it to the AC charger supplied with the Micro Scientist—the charger plugs into any standard 110 volt wall outlet.

The nickel-cadmium batteries supplied are rechargeable. Useful life is approximately 1000 charge/discharge cycles. When fully discharged, the batteries can be recharged overnight with the Micro Scientist turned off. When turned on and operating, recharging takes somewhat longer.

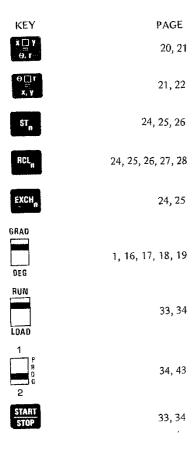
To remove the batteries, turn the Micro Scientist over, squeeze together the two round plungers at the top of the case and pull outward on the handle. Remove the batteries and replace with fresh ones-Nickel-Cadmium batteries; Monroe Part No. CD 3400017 are recommended.

 NOTE: Observe polarity of batteries when installing. Improper battery installation may severely damage the calculator. Follow the diagram when installing batteries.

The AC adapter always supplies charging current to the batteries, whether the Micro Scientist is on or off. For this reason, you must not use any type battery other than nickel-cadmium. In an emergency, you may substitute mercury or alkaline batteries, but ONLY if the charger is disconnected. Discharged mercury or alkaline batteries must be removed before the AC adapter is reconnected. Failure to do this may damage the Micro Scientist or the batteries may explode.

KEY INDEX

KEY	PAGE	KEY	PAGE
	1, 2, 34		9,10
	2		13, 14, 23
ВЭ			14
5 6		2ND FUNC	14
2 a	2, 3, 4	102	15
CHA EXP	3, 4	io ¹	15, 16
	4		16, 18
Ŧ	5, 6, 10, 26		16, 18
	5, 11, 26	974	17, 18
×	5, 7, 8, 11, 27	TAN	17, 18
	5, 11, 23	2.4	18
	5, 8, 9		19
a×	6,12		19, 20


KEY INDEX

KEY INDEX

aan ta garigeadean - ee

where we can set the set of the set μ_{2} , μ_{1} , μ_{2}

INDEX

INDEX		
	Pa	ge
AC ADAPTER	١, 6	51
ACCURACY	. :	59
ARITHMETIC	,	5
Constant	•	10
Chain		5
Register	, ,	25
BATTERIES	1, I	61
CORRECTING MISTAKES		
DECIMAL POINT		3
Setting		4
DECISIONS		
DEGREES 1, 16, 17, 18, 19, 2		
ENTERING NUMBERS		
<u> </u>		
ERROR CONDITIONS		
FUNCTION MIXING		
GRADS 1, 16, 17, 18, 19, 2		
HYPERBOLIC FUNCTIONS 2		
MAXIMUM VALUE OF A FUNCTION		
ON/OFF SWITCH		
PARENTHESES		
PHYSICS		
POWERS		
PROGRAMMING		
QUADRATIC EQUATIONS ,		
RECHARGING	1,	61

64

and the second second

INDEX

E

PageREGISTERS24Storing24Recalling24Exchange25, 26, 27SCIENTIFIC NOTATION3SPECIAL FUNCTIONS13SQUARING7VOLUME OF A SPHERE24

Monroe, The Calculator Company Orange, New Jersey • Toronto, Canada • Zurich, Switzerland Sales and Service Throughout the World

1807-S Printed in U.S.A.

and the second states of the